Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Lipid Res ; 48(8): 1801-24, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17488996

RESUMO

Acidic glycosphingolipid components were extracted from the opportunistic mycopathogen Aspergillus fumigatus and identified as inositol phosphorylceramide and glycosylinositol phosphorylceramides (GIPCs). Using nuclear magnetic resonance sppectroscopy, mass spectrometry, and other techniques, the structures of six major components were elucidated as Ins-P-Cer (Af-0), Manp(alpha1-->3)Manp(alpha1-->2)Ins-P-Cer (Af-2), Manp(alpha1-->2)Manp(alpha1-->3)Manp(alpha1-->2)Ins-P-Cer (Af-3a), Manp(alpha1-->3)[Galf(beta1-->6)]Manp(alpha1-->2)-Ins-P-Cer (Af-3b), Manp(alpha1-->2)-Manp(alpha1-->3)[Galf(beta1-->6)]Manp(alpha1-->2)Ins-P-Cer (Af-4), and Manp(alpha1-->3)Manp(alpha1-->6)GlcpN(alpha1-->2)Ins-P-Cer (Af-3c) (where Ins = myo-inositol and P = phosphodiester). A minor A. fumigatus GIPC was also identified as the N-acetylated version of Af-3c (Af-3c*), which suggests that formation of the GlcNalpha1-->2Ins linkage may proceed by a two-step process, similar to the GlcNalpha1-->6Ins linkage in glycosylphosphatidylinositol (GPI) anchors (transfer of GlcNAc, followed by enzymatic de-N-acetylation). The glycosylinositol of Af-3b, which bears a distinctive branching Galf(beta1-->6) residue, is identical to that of a GIPC isolated previously from the dimorphic mycopathogen Paracoccidioides brasiliensis (designated Pb-3), but components Af-3a and Af-4 have novel structures. Overlay immunostaining of A. fumigatus GIPCs separated on thin-layer chromatograms was used to assess their reactivity against sera from a patient with aspergillosis and against a murine monoclonal antibody (MEST-1) shown previously to react with the Galf(beta1-->6) residue in Pb-3. These results are discussed in relation to pathogenicity and potential approaches to the immunodiagnosis of A. fumigatus.


Assuntos
Aspergillus fumigatus/metabolismo , Glicoesfingolipídeos/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Sequência de Carboidratos , Glicoesfingolipídeos/metabolismo , Dados de Sequência Molecular , Monossacarídeos/química
2.
J Mass Spectrom ; 42(5): 598-620, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17370250

RESUMO

Glycosphingolipids with R(f) values higher than those of monoglycosylceramides (MGCs) in normal phase HPTLC appear to be normal components of myelin. A series of such low polarity components, referred to as 'fast moving cerebrosides' (FMCs), have been isolated from rat brain, and two of these fractions (FMC-1 and FMC-2) were found to be novel derivatives of galactosylceramide (GalCer) exhibiting O-acetylation at the 3-hydroxy group of the sphingoid moiety, and incorporating either non-hydroxy or 2-hydroxy fatty-N-acylation (Dasgupta S, Levery SB, Hogan EL. J. Lipid Res. 2002; 43: 751-761). Similar to the parent compounds, the 3-O-acetyl-sphingoid derivatives exhibit considerable diversity with respect to fatty-N-acyl chain length, manifested by heterogeneous molecular ion (Li(+) adduct) profiles. However, a detailed analysis of the individual molecular variants ('lipoforms'), e.g. by tandem MS/CID-MS analysis, was not carried out. In addition, several other FMCs distinguished by even lower polarity (higher HPTLC R(f) values) were isolated but have remained uncharacterized. For this study, analysis of both the known and unknown FMC components was carried out by positive ion ESI-MS and MS/CID-MS of their Li(+) adducts on a Q-TOF mass spectrometer. Since a Q-TOF instrument has not yet been applied to MS of lithiated cerebrosides and FMCs, MS/CID-MS spectra of bovine brain GalCer (both types) and the previously characterized rat brain FMCs (FMC-1 and FMC-2), having 3-O-acetylation of the sphingoid, were systematically acquired and their fragmentation behavior compared. This was followed by systematic analysis of previously uncharacterized FMC fractions (FMC-3 through FMC-5/6/7). The GalCer and FMC components proved to be amenable to analysis by this technique, and the data confirm that the latter are all related 3-O-acetyl-sphingoid derivatives, with the higher R(f) components carrying additional O-acetyl modifications on the galactosyl residue, which further reduce their polarity. The utility of the technique, the structures of unknown FMCs, and their characteristic fragmentation patterns are described.


Assuntos
Galactosilceramidas/química , Lítio/química , Bainha de Mielina/química , Esfingosina/química , Animais , Encéfalo/metabolismo , Cátions Monovalentes , Bovinos , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos
3.
J Lipid Res ; 46(4): 759-68, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15654124

RESUMO

To defend themselves against fungal pathogens, plants produce numerous antifungal proteins and peptides, including defensins, some of which have been proposed to interact with fungal cell surface glycosphingolipid components. Although not known as a phytopathogen, the filamentous fungus Neurospora crassa possesses numerous genes similar to those required for plant pathogenesis identified in fungal pathogens (Galagan, J. E., et al. 2003. Nature 422: 859-868), and it has been used as a model for studying plant-phytopathogen interactions targeting fungal membrane components (Thevissen, K., et al. 2003. Peptides. 24: 1705-1712). For this study, neutral glycolipid components were extracted from wild-type and plant defensin-resistant mutant strains of N. crassa. The structures of purified components were elucidated by NMR spectroscopy and mass spectrometry. Neutral glycosphingolipids of both wild-type and mutant strains were characterized as beta-glucopyranosylceramides, but those of the mutants were found with structurally altered ceramides. Although the wild type expressed a preponderance of N-2'-hydroxy-(E)-Delta3-octadecenoate as the fatty-N-acyl component attached to the long-chain base (4E,8E)-9-methyl-4,8-sphingadienine, the mutant ceramides were found with mainly N-2'-hydroxyhexadecanoate instead. In addition, the mutant strains expressed highly increased levels of a sterol glucoside identified as ergosterol-beta-glucoside. The potential implications of these findings with respect to defensin resistance in the N. crassa mutants are discussed.


Assuntos
Defensinas/farmacologia , Farmacorresistência Fúngica/genética , Glicolipídeos/química , Glicolipídeos/metabolismo , Mutação/genética , Neurospora crassa/genética , Neurospora crassa/metabolismo , Proteínas de Plantas/farmacologia , Cromatografia em Camada Fina , Defensinas/metabolismo , Farmacorresistência Fúngica/efeitos dos fármacos , Glicolipídeos/isolamento & purificação , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Estrutura Molecular , Neurospora crassa/química , Neurospora crassa/efeitos dos fármacos , Proteínas de Plantas/metabolismo
4.
J Lipid Res ; 44(11): 2073-88, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12923229

RESUMO

Aspergillus nidulans is a well-established nonpathogenic laboratory model for the opportunistic mycopathogen, A. fumigatus. Some recent studies have focused on possible functional roles of glycosphingolipids (GSLs) in these fungi. It has been demonstrated that biosynthesis of glycosylinositol phosphorylceramides (GIPCs) is required for normal cell cycle progression and polarized growth in A. nidulans (Cheng, J., T.-S. Park, A. S. Fischl, and X. S. Ye. 2001. Mol. Cell Biol. 21: 6198-6209); however, the structures of A. nidulans GIPCs were not addressed in that study, nor were the functional significance of individual structural variants and the downstream steps in their biosynthesis. To initiate such studies, acidic GSL components (designated An-2, -3, and -5) were isolated from A. nidulans and subjected to structural characterization by a combination of one-dimensional (1-D) and 2-D NMR spectroscopy, electrospray ionization-mass spectrometry (ESI-MS), ESI-MS/collision-induced decomposition-MS (MS/CID-MS), ESI-pseudo-[CID-MS]2, and gas chromatography-MS methods. All three were determined to be GIPCs, with mannose as the only monosaccharide present in the headgroup glycans; An-2 and An-3 were identified as di- and trimannosyl inositol phosphorylceramides (IPCs) with the structures Man alpha 1-->3Man alpha 1-->2Ins1-P-1Cer and Man alpha 1-->3(Man alpha 1-->6)Man alpha 1-->2Ins1-P-1Cer, respectively (where Ins = myo-inositol, P = phosphodiester, and Cer = ceramide). An-5 was partially characterized, and is proposed to be a pentamannosyl IPC, based on the trimannosyl core structure of An-3.


Assuntos
Aspergillus nidulans/química , Ceramidas/análise , Ceramidas/química , Glicoesfingolipídeos/análise , Glicoesfingolipídeos/química , Manose/análise , Manose/química , Cromatografia em Camada Fina , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Fosforilação , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...